CALCULATION OF NONSTEADY CONVECTIVE HEAT
TRANSFER FOR TURBULENT VISCOUS
INCOMPRESSIBLE FLOW IN A TUBE OF
ELLIPTICAL CROSS SECTION
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An approximate analytical expression is obtained for the temperature field. The variations of
the dimensionless mass-average temperature of the fluid and the dimensionless integral-average
heat flux at the tube wall are determined for various values of the Reynolds and Prandtl numbers,

We consider the problem of determining the nonsteady temperature field in viscous, hydrodynamically
stabilized, tubulent flow of a fluid in a semiinfinite tube of elliptical cross section, We assume that the flow
is quasisteady, the fluid is incompressible, its physical properties do not depend on the temperature, and the
variation of the heat-flux density in the axial direction due to heat conduction is small in comparison with the
variation due to convection.

The fluid has a constant temperature T at the initial time 7 = 0 and at the tube entry z = 0, Beginning
at time T = 0% the inner surface of the tubewall is maintained at a constant temperature Ty = T,

The problem of determining the temperature field is reducible to the solution of the nonsteady energy
equation in dimensionless form

% _ypx, .2 [(1 Pr—v)ae]~ 9 [(‘l_Pr—\.)a(-)"

dFo Y9z “ax |\ TP, Jox] ar pr., oy
03]
(Fo>0, Z>0, I Xi<1 2—¢, V. <V (2—e—X) (1 —¢))
subject to the boundary and initial conditions
O(X, Y, Z, Fo)ip,_o = 0,
O(X, Y, Z, Fo) 220 =10, } ')
68(X, Y, Z, Fo)is= 1.

Here ® = (T — To)/(Tw — To); X = x/R; Y = y/R; Z = z/Pe -R; Pe = uR/z; Fo = a1/R%; R? = b%c/(b? + ¢?); U =

wy fux; T(%, ¥, 2, T), unknown temperature field; x, y, z, Cartesian coordinates; 7, time; w,, velocity
protile of the turbulent fluid flow in the duct; @, thermal diffusivity of the fluid; Pr, Prandtl number; Pr,,
turbulent Prandtl number (Prm = 1 [1]); 7, turbulent viscosity coetticient in the fluid flow; us = VTw/p, average
dynamic velocity of the fluid; Tw, perimeter-average tangential stress on the tube wall; and S, index referring
to the lateral surface of the tube. Everywhere ®, U, v represent the dimensionless average values of the tem-
perature, velocity, and viscosity of the fluid, respectively, and e’ =1 — /o)l

In determining the profile of the velocity U(X, Y) and turbulent viscosity ¥ we use the following expres-

sion derived in [2]:
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where % = 0.423; 8=11; W = Re,.ﬁﬁ’; §=RH/f;Re* = wR/v is the dynamic Reynolds number; W(X, Y) is the
solution of the Poisson equations
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Fig, 1.

Variation of mass-average fluid temperature (solid curves) and dimensionless inte-
gral-average heat flux at the tube wall (dashed curves).

a) Rey =500, Pr =0.7; b) 500, 1; c)
300, 0.7; 1) Z = 0.1; 2) 0.15; 3) 0.2; 4) 0,25; 5) 7.0,
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for a domain of elliptical cross section; Il and f are the perimeter and cross-sectional area of the tube; and
Wmax = Re\RWy04. The foregoing expressions for UX, Y) and v(X, Y) are based on formulas obtained by
Reichardt [8] for the velocity profile and turbulent viscosity.

The expression for \N’(’(X, Y) has the form [3]

(X, V)=[2—e— X2 (1 —e) Y2/(4 — 2¢).

To solve problem (1), (2) we apply the Bubnov—Galerkin (BG) method {4] and the method of characteris-
tics [5] simultaneously. We seek an approximate solution in the form

n
0,.(X, Y, Z, Fo=1~ 2 ax (Z, Fo) O, (X, Y),
k=1
where

U, Y) , et
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is a system of coordinate functions satisfying the requirements of the BG method [4] and ai (Z, Fo) denotes un-
known functions, which are determined from a system of linear homogeneous first-order partial differential
equations [6] by the method of characteristics.

We obtain the solution of problem (1), (2) in the second approximation (n = 2) in the form

2 a} (Fo), Z >y Fo,
0,(X, Y, Z, Fo) == | — 2 D, (X, V)

ag (Z, Fo), pyFo << Z < p,Fo, (5)
k=t @y (2), Z < pyFo,
where aj (Fo); a{(Z, Fo); a}(Z); ui (k = 1, 2) are defined in [7].

To facilitate the computations we introduce the dimensionless mass-average temperature of the fluid [1]
and the integral-average heat flux at the tube wall [3]:
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Fig, 2, Variation of local Nusselt
number Nu at tube wall, calculated
according to (5) (dashed curves) and
the equation in {1] (solid curves) for
Pr = 0,7. 1) Re = 10%; 2) Re = 5-10°,

?]5 (Z» FO) = \ quS.nv (7)
N
where D is the domain of the tube cross section, The expression for the dimensionless integral-average heat
flux takes the form

9sR -
————— = —Re a,(Z, Foyd, (X, Y).
T, —Ty + i O L (X, Y) (8)

Equations (5) and (8) provide a means for analyzing the influence of the shape of the tube cross section on
the heat-transfer process.

Figures la-c show the variation of the mass-average temperature of the fluid and the dimensionless inte-
gral-average heat flux at the tube wall for various values of the Prandtl and dynamic Reynolds numbers.

To test the validity of the solution obtained here we compare the results of calculations of the local Nus-
selt number Nu [1] for e = 0 (circular cross section) with the results of calculations of Nu according to the ex-
pression obtained in [1] for the steady-state problem in a circular tube. The comparison is made for Pr = 0,7
and Re = 10% and 5°10%, where Re = 5d/v, @ is the average velocity over the tube cross section, d is the tube
diameter, us =wvt/8 [1], and the frictional drag coefficient is calculated according to the formula of Filonenko
[

¢ =(1.821gRe — 1.64)™2

It is seen in Fig, 2 that the discrepancy in the values of Nu is not greater than 3%, indicating that the second
approximation already yields good agreement of the present results with the published data for the given spe-
cial case of the problem,
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